Evaluation of microalgae cell disruption by ultrasonic treatment.
نویسندگان
چکیده
Microalgae are a promising feedstock for biofuels because of their capability to produce lipids. Cell disruption is necessary to maximize lipid extraction. Sonication conditions were evaluated for breaking heterotrophic (Schizochytrium limacinum) and autotrophic (Chlamydomonas reinhardtii) microalgae cells. Cell disruption was estimated by Nile red-lipids fluorescence quantification in S. limacinum and by the release of intracellular chlorophyll and carotenoids in green microalga C. reinhardtii. In both species, approximately 800 J/10 mL was the energy input necessary to maximize cell disruption, regardless of the cell concentrations studied. Increasing sonication time produced increasing amount of free radicals, quantified by the formation of hydroxyterephthalate. Sonication energy beyond the level needed for cell disruption induced oxidation of arachidonic acid, a polyunsaturated fatty acid typically found in marine lipids. Careful control of sonication conditions is necessary to maximize oil extraction at the lowest operational cost and to prevent oil from free radical-induced degradation.
منابع مشابه
Efficient Extraction of Starch from Microalgae Using Ultrasonic Homogenizer and Its Conversion into Ethanol by Simultaneous Saccharification and Fermentation
To utilize starch and protein contained in microalgae as carbon and nitrogen sources for ethanol production, an extraction method, i.e. ultrasonic treatment using a homogenizer, and simultaneous saccharification and fermentation (SSF) of extracted microalgae solution were studied using Chlamydomonas fasciata Ettl 437. 30 min of ultrasonic treatment gave the maximum extraction ratio of starch co...
متن کاملIn vitroAnticancer Evaluation of Saponins Obtained From Spirulina platensis on MDA, HepG2, and MCF7 Cell Lines
Introduction: Microalgae are known for their bioactive compounds with potential applications as antimicrobial, antiaging, and anticancer activities. Spirulina platensis (S. platensis) is a filamentous and photosynthetic microorganism that has 25 kinds of vitamins and minerals that contain many compounds with biotic activity such as alkaloids, phenolic compounds, terpenoids, and saponin...
متن کاملIn vitroAnticancer Evaluation of Saponins Obtained From Spirulina platensis on MDA, HepG2, and MCF7 Cell Lines
Introduction: Microalgae are known for their bioactive compounds with potential applications as antimicrobial, antiaging, and anticancer activities. Spirulina platensis (S. platensis) is a filamentous and photosynthetic microorganism that has 25 kinds of vitamins and minerals that contain many compounds with biotic activity such as alkaloids, phenolic compounds, terpenoids, and saponin...
متن کاملMild and Selective Protein Release of Cell Wall Deficient Microalgae with Pulsed Electric Field
Pulsed electric field (PEF) is considered to be a very promising technology for mild cell disruption. The application of PEF for microalgae that have a rigid cell wall, however, is hampered by the presence of that rigid outer cell wall. A cell wall free mutant of C. reinhardtii was used to mimic pretreated microalgae with removed cell wall, to investigate the possibility of using PEF for protei...
متن کاملEvaluation of pre-treatment efficiency of fats, oils and greases using low frequency ultrasonic waves to accelerate the process of anaerobic digestion
Background and Objective: Hydrolysis of fat, oil and grease by ultrasonic waves is a pre-treatment method before anaerobic digestion which can change their physical, chemical and biological properties. The main purpose of this study was to investigate the efficiency of ultrasonic waves to improve the hydrolysis process and its use as an auxiliary substrate to increase the efficiency of anaerobi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 125 شماره
صفحات -
تاریخ انتشار 2012